EACA’S Second International School
Computer Algebra and Applications
Valladolid, Spain

On the degree bounds of the Graver basis

Christos Tatakis

Joint work with A.Thoma

June 27, 2013
1 Introduction
 • Toric Ideals
 • Toric Ideals of Graphs

2 Description of the Problem
 • True Circuit conjecture
 • The Problem

3 On the degree bounds of Graver basis
 • The graph G_r^n
 • The degrees of elements of Gr_A, C_A of the $I_{G_r^n}$
Basic Notations of Toric Ideals

Let $A = \{a_1, \ldots, a_m\} \subseteq \mathbb{N}^n$ be a vector configuration and $\mathbb{N}A := \{l_1a_1 + \cdots + l_ma_m \mid l_i \in \mathbb{N}\}$ the corresponding affine semigroup. We grade the polynomial ring $\mathbb{K}[x_1, \ldots, x_m]$ over an arbitrary field \mathbb{K} by the semigroup $\mathbb{N}A$ setting $\deg_A(x_i) = a_i$ for $i = 1, \ldots, m$. For $u = (u_1, \ldots, u_m) \in \mathbb{N}^m$, we define the A-degree of the monomial $x^u := x_1^{u_1} \cdots x_m^{u_m}$ to be

$$u_1a_1 + \cdots + u_ma_m \in \mathbb{N}A.$$

We denoted by $\deg_A(x^u)$, while the usual degree $u_1 + \cdots + u_m$ of x^u we denoted by $\deg(x^u)$.
Basic Notations of Toric Ideals

Let $A = \{a_1, \ldots, a_m\} \subseteq \mathbb{N}^n$ be a vector configuration and $\mathbb{N}A := \{l_1a_1 + \cdots + l_ma_m \mid l_i \in \mathbb{N}\}$ the corresponding affine semigroup. We grade the polynomial ring $\mathbb{K}[x_1, \ldots, x_m]$ over an arbitrary field \mathbb{K} by the semigroup $\mathbb{N}A$ setting $\deg_A(x_i) = a_i$ for $i = 1, \ldots, m$. For $u = (u_1, \ldots, u_m) \in \mathbb{N}^m$, we define the A-degree of the monomial $x^u := x_1^{u_1} \cdots x_m^{u_m}$ to be

$$u_1a_1 + \cdots + u_ma_m \in \mathbb{N}A.$$

We denoted by $\deg_A(x^u)$, while the usual degree $u_1 + \cdots + u_m$ of x^u we denoted by $\deg(x^u)$.

Definition

The toric ideal I_A associated to A is the binomial ideal

$$I_A = \langle x^u - x^v : \deg_A(x^u) = \deg_A(x^v) \rangle.$$
A nonzero binomial $x^u - x^v$ in l_A is called primitive if there exists no other binomial $x^w - x^z$ in l_A such that $x^w | x^u$ and $x^z | x^v$.

Definition

The set of the primitive binomials forms the Graver basis of l_A and is denoted by Gr_A.
A nonzero binomial $x^u - x^v$ in I_A is called primitive if there exists no other binomial $x^w - x^z$ in I_A such that $x^w | x^u$ and $x^z | x^v$.

Definition

The set of the primitive binomials forms the Graver basis of I_A and is denoted by Gr_A.

- The support of a monomial x^u of $\mathbb{K}[x_1, \ldots, x_m]$ is $supp(x^u) := \{i \mid x_i \text{ divides } x^u\}$ and the support of a binomial $B = x^u - x^v$ is $supp(B) := supp(x^u) \cup supp(x^v)$.
A nonzero binomial $x^u - x^v$ in I_A is called **primitive** if there exists no other binomial $x^w - x^z$ in I_A such that

$$x^w | x^u \text{ and } x^z | x^v.$$

Definition

The set of the primitive binomials forms the Graver basis of I_A and is denoted by \mathcal{Gr}_A.

- The **support** of a monomial x^u of $\mathbb{K}[x_1, \ldots, x_m]$ is $\text{supp}(x^u) := \{i \mid x_i \text{ divides } x^u\}$ and the support of a binomial $B = x^u - x^v$ is $\text{supp}(B) := \text{supp}(x^u) \cup \text{supp}(x^v)$.

- An irreducible binomial B belonging to I_A is called a **circuit** of I_A if there is no binomial $B' \in I_A$ such that $\text{supp}(B') \subsetneq \text{supp}(B)$.

Christos Tatakis

On the degree bounds of the Graver basis
A nonzero binomial $x^u - x^v$ in l_A is called \textit{primitive} if there exists no other binomial $x^w - x^z$ in l_A such that $x^w | x^u$ and $x^z | x^v$.

Definition

The set of the primitive binomials forms the Graver basis of l_A and is denoted by \mathcal{Gr}_A.

- The\textit{ support} of a monomial x^u of $\mathbb{K}[x_1, \ldots, x_m]$ is $\text{supp}(x^u) := \{i \mid x_i \text{ divides } x^u\}$ and the support of a binomial $B = x^u - x^v$ is $\text{supp}(B) := \text{supp}(x^u) \cup \text{supp}(x^v)$.

- An irreducible binomial B belonging to l_A is called a \textit{circuit} of l_A if there is no binomial $B' \in l_A$ such that $\text{supp}(B') \subsetneq \text{supp}(B)$.

- The set of the circuits is denoted by \mathcal{C}_A and it is a subset of the Graver basis.
Elements of Graph Theory

- Let G be a finite simple connected graph on the vertex set $V(G) = \{v_1, \ldots, v_n\}$ and $E(G) = \{e_1, \ldots, e_q\}$ be the set of edges of G.

- A walk of length s connecting $v_1 \in V(G)$ and $v_{s+1} \in V(G)$ is a finite sequence of the form $w = (\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_s, v_{s+1}\})$ with each $\{v_j, v_{j+1}\} \in E(G)$.

- An even (respectively odd) walk is a walk of even (respectively odd) length.

- A walk $w = (e_1 = \{v_1, v_2\}, e_2 = \{v_2, v_3\}, \ldots, e_q = \{v_s, v_{s+1}\})$ is called closed if $v_{s+1} = v_1$.

- A cycle is a closed walk $(\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_q, v_1\})$ with $v_k \neq v_j$, for every $1 \leq k < j \leq q$.

- Christos Tatakis

On the degree bounds of Graver basis
Elements of Graph Theory

Let G be a finite simple connected graph on the vertex set $V(G) = \{v_1, \ldots, v_n\}$ and $E(G) = \{e_1, \ldots, e_q\}$ be the set of edges of G.

A walk of length s connecting $v_1 \in V(G)$ and $v_{s+1} \in V(G)$ is a finite sequence of the form

$$w = (\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_s, v_{s+1}\})$$

with each $\{v_j, v_{j+1}\} \in E(G)$. An even (respectively odd) walk is a walk of even (respectively odd) length. A walk $w = (e_1 = \{v_1, v_2\}, e_2 = \{v_2, v_3\}, \ldots, e_q = \{v_s, v_{s+1}\})$ is called closed if $v_{s+1} = v_1$. A cycle is a closed walk

$$(\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_q, v_1\})$$

with $v_k \neq v_j$, for every $1 \leq k < j \leq q$.

Christos Tatakis

On the degree bounds of the Graver basis
Elements of Graph Theory

- We denote by w the subgraph of G with vertices the vertices of the walk and edges the edges of the walk w.

- A **cut edge** (respectively **cut vertex**) is an edge (respectively vertex) of the graph whose removal increases the number of connected components of the remaining subgraph.

- A graph is called **biconnected** if it is connected and does not contain a cut vertex. A **block** is a maximal biconnected subgraph of a given graph G.
Definition of I_G

- Let G be a finite simple connected graph with vertices $V(G) = \{v_1, \ldots, v_n\}$ and edges $E(G) = \{e_1, \ldots, e_m\}$.

\[
\text{Let } G \text{ be a finite simple connected graph with vertices } V(G) = \{v_1, \ldots, v_n\} \text{ and edges } E(G) = \{e_1, \ldots, e_m\}.
\]
Definition of I_G

- Let G be a finite simple connected graph with vertices $V(G) = \{v_1, \ldots, v_n\}$ and edges $E(G) = \{e_1, \ldots, e_m\}$.
- Let $\mathbb{K}[e_1, \ldots, e_m]$ be the polynomial ring in the m variables e_1, \ldots, e_m over a field \mathbb{K}.
Definition of I_G

- Let G be a finite simple connected graph with vertices $V(G) = \{v_1, \ldots, v_n\}$ and edges $E(G) = \{e_1, \ldots, e_m\}$.
- Let $K[e_1, \ldots, e_m]$ be the polynomial ring in the m variables e_1, \ldots, e_m over a field K.
- We will associate each edge $e = \{v_i, v_j\} \in E(G)$ with the element $a_e = v_i + v_j$ in the free abelian group \mathbb{Z}^n with basis the set of vertices of G.

Definition of I_G

- Let G be a finite simple connected graph with vertices $V(G) = \{v_1, \ldots, v_n\}$ and edges $E(G) = \{e_1, \ldots, e_m\}$.
- Let $K[e_1, \ldots, e_m]$ be the polynomial ring in the m variables e_1, \ldots, e_m over a field K.
- We will associate each edge $e = \{v_i, v_j\} \in E(G)$ with the element $a_e = v_i + v_j$ in the free abelian group \mathbb{Z}^n with basis the set of vertices of G.

Definition

We denote by I_G the toric ideal I_{A_G} in $K[e_1, \ldots, e_m]$, where $A_G = \{a_e \mid e \in E(G)\} \subset \mathbb{Z}^n$.
Definition of I_G

Given an even closed walk $w = (e_1, \ldots, e_{2q-1}, e_{2q})$ of the graph G we denote by $E^+(w) = q \prod_{k=1}^{2q-1} e_{2k} - 1$, $E^-(w) = q \prod_{k=1}^{2q-1} e_{2k}$, and by B_w the binomial $B_w = E^+(w) - E^-(w) \in I_G$.

Theorem (Villarreal, 1995)

The toric ideal I_G is generated by binomials of this form $I_G = \langle B_w : w \text{ is an even closed walk of } G \rangle$.

Christos Tatakis

On the degree bounds of the Graver basis
Definition of I_G

Given an even closed walk $w = (e_1, \ldots, e_{2q-1}, e_{2q})$ of the graph G we denote by

$$E^+(w) = \prod_{k=1}^{q} e_{2k-1}, \quad E^-(w) = \prod_{k=1}^{q} e_{2k}$$

and by B_w the binomial

$$B_w = E^+(w) - E^-(w) \in I_G.$$
Definition of I_G

Given an even closed walk $w = (e_1, \ldots, e_{2q-1}, e_{2q})$ of the graph G we denote by

$$E^+(w) = \prod_{k=1}^{q} e_{2k-1}, \quad E^-(w) = \prod_{k=1}^{q} e_{2k}$$

and by B_w the binomial

$$B_w = E^+(w) - E^-(w) \in I_G.$$

Theorem (Villarreal, 1995)

The toric ideal I_G is generated by binomials of this form

$$I_G = \langle B_w, \ w \ is \ an \ even \ closed \ walk \ of \ G \rangle.$$
Example

\[\begin{align*}
1 & \quad 2 \\
3 & \quad 4 \\
8 & \quad 7 \\
6 & \quad 5
\end{align*} \]

Therefore \(B_{w_1}, B_{w_2}, B_{w_3} \in \mathcal{I}_G \).
Example

\[w_1 = (e_1, e_2, e_7, e_8) \] we have that \(E^+(w_1) = e_1e_7 \) and \(E^-(w_1) = e_2e_8 \) therefore \(B_{w_1} = e_1e_7 - e_2e_8 \).
Example

- \(w_1 = (e_1, e_2, e_7, e_8) \) we have that \(E^+(w_1) = e_1e_7 \) and \(E^-(w_1) = e_2e_8 \) therefore \(B_{w_1} = e_1e_7 - e_2e_8 \).

- \(w_2 = (e_3, e_4, e_5, e_6) \implies B_{w_2} = e_3e_5 - e_4e_6 \)
Example

- \(w_1 = (e_1, e_2, e_7, e_8) \) we have that \(E^+(w_1) = e_1e_7 \) and \(E^-(w_1) = e_2e_8 \) therefore \(B_{w_1} = e_1e_7 - e_2e_8 \).
- \(w_2 = (e_3, e_4, e_5, e_6) \implies B_{w_2} = e_3e_5 - e_4e_6 \)
- \(w_3 = (e_1, e_2, \ldots, e_8) \implies B_{w_3} = e_1e_3e_5e_7 - e_2e_4e_6e_8 \).

Therefore

\[B_{w_1}, B_{w_2}, B_{w_3} \in I_G. \]
The set of the circuits of I_G

The following theorem determines the form of the circuits of a toric ideal of a graph G.

Theorem (Villareal, 1995)

Let G be a graph and let W be a connected subgraph of G. The subgraph W is the graph w of a walk w such that B_w is a circuit if and only if

1. W is an even cycle or
2. W consists of two odd cycles intersecting in exactly one vertex or
3. W consists of two vertex-disjoint odd cycles joined by a path.
The set of the circuits of I_G

The following theorem determine the form of the circuits of a toric ideal of a graph G.

Theorem (Villareal, 1995)

Let G be a graph and let W be a connected subgraph of G. The subgraph W is the graph w of a walk w such that B_w is a circuit if and only if

1. W is an even cycle or
2. W consists of two odd cycles intersecting in exactly one vertex or
3. W consists of two vertex-disjoint odd cycles joined by a path.
The Graver basis of I_G

A walk w is primitive if and only if the corresponding binomial B_w is primitive.

Example

In the previous example, the binomial $B_{w_3} = e_1 e_3 e_5 e_7 - e_2 e_4 e_6 e_8$ is not primitive. There exists the even closed subwalk $w_1 = (e_1, e_2, e_7, e_8)$ of w_3, where its corresponding binomial is $B_{w_1} = e_1 e_7 - e_2 e_8$. We remark that $E^+(w_1) | E^+(w_3)$ and $E^-(w_1) | E^-(w_3)$.
The next Theorem describes the form of the underlying graph of a primitive walk.

Theorem (Reyes, - , Thoma, 2012)

Let G be a graph and let W be a connected subgraph of G. The subgraph W is the graph w of a primitive walk w if and only if

1. W is an even cycle or
2. W is not biconnected and
 1. every block of W is a cycle or a cut edge and
 2. every cut vertex of W belongs to exactly two blocks and separates the graph in two parts, the total number of edges of the cyclic blocks in each part is odd.
One of the fundamental problems in toric algebra is to give good upper bounds on the degrees of the elements of the Graver basis.
One of the fundamental problems in toric algebra is to give good upper bounds on the degrees of the elements of the Graver basis.

It was conjectured that the degree of any element in the Graver basis \mathcal{G}_A of a toric ideal I_A is bounded above by the maximal true degree of any circuit in C_A.

True Circuit conjecture (Sturmfels, 1995)

Let us call t_A the maximal true degree of any circuit in C_A. Then

$$\deg(B) \leq t_A,$$

for every $B \in \mathcal{G}_A$.

Christos Tatakis

On the degree bounds of the Graver basis
Definition (Sturmfels)

Let $C \in C_A$ be a circuit and regard its support $\text{supp}(C)$ as a subset of A. The index of the circuit C is denoted by $\text{index}(C)$ and is defined as:

$$\text{index}(c) = [\mathbb{R}(\text{supp}(c)) \cap \mathbb{Z}A : \mathbb{Z}(\text{supp}(c))].$$

The true degree of a circuit C is defined:

$$\text{true deg}(C) = \deg(C) \cdot \text{index}(C)$$
Recall:

True Circuit conjecture

Let us call t_A the maximal true degree of any circuit in C_A. Then

$$\deg(B) \leq t_A,$$

for every $B \in \Gr_A$.

There are several examples of families of toric ideals where the true circuit conjecture is true. It is also true for some families of toric ideals of graphs.
Recall:

True Circuit conjecture

Let us call t_A the maximal true degree of any circuit in C_A. Then

$$\text{deg}(B) \leq t_A,$$

for every $B \in \mathcal{Gr}_A$.

There are several examples of families of toric ideals where the true circuit conjecture is true. It is also true for some families of toric ideals of graphs. However the true circuit conjecture is not true in the general case [- , Thoma, 2011].
To answer the conjecture we gave an infinite family of counterexamples by providing toric ideals of graphs such that:

\[t_A < \deg(B) \leq (t_A)^2, \quad \forall B \in Gr_A. \]
The Problem

To answer the conjecture we gave an infinite family of counterexamples by providing toric ideals of graphs such that:

\[t_A < \deg(B) \leq (t_A)^2, \, \forall B \in Gr_A. \]
Theorem

Let G be a graph and let C be a circuit in C_{AG}. Then

$$true \ deg(C) = deg(C).$$
Theorem

Let G be a graph and let C be a circuit in C_{A_G}. Then

$$true \ deg(C) = \ deg(C).$$

Therefore to compare the maximum degrees of primitive elements of the l_G with t_A, its enough to compare the $\deg(B)$ with $\deg(C)$, for every $B \in Gr_A$ and for every $C \in C_A$.
Let \(n \geq 3 \) be an odd integer. Let \(G_0^n \) be a cycle of length \(n \). For \(r \geq 0 \) we define the graph \(G_r^n \) inductively on \(r \). \(G_r^n \) is the graph taken from \(G_{r-1}^n \) by adding to each vertex of degree two of the graph \(G_{r-1}^n \) a cycle of length \(n \).
Let $n \geq 3$ be an odd integer. Let G^n_0 be a cycle of length n. For $r \geq 0$ we define the graph G^n_r inductively on r. G^n_r is the graph taken from G^n_{r-1} by adding to each vertex of degree two of the graph G^n_{r-1} a cycle of length n.

Example

We see in this figure the graphs $A = G^3_0$, $B = G^3_1$ and $C = G^3_2$.

We note that the graph G^n_r is Eulerian since by construction it is connected and every vertex has even degree.
Proposition

Let w^n_{r} be any even closed Eulerian walk of the graph G^n_r. The binomial $B_{w^n_r}$ is an element of the Graver basis of $I_{G^n_r}$ and

$$\deg(B_{w^n_r}) = \frac{1}{2}(n + n^2\left(\frac{(n - 1)^r - 1}{n - 2}\right)).$$
Proposition

Let w^n_r be any even closed Eulerian walk of the graph G^n_r. The binomial $B_{w^n_r}$ is an element of the Graver basis of $I_{G^n_r}$ and

$$\deg(B_{w^n_r}) = \frac{1}{2}(n + n^2\left(\frac{(n - 1)^r - 1}{n - 2}\right)).$$

Proposition

Let $t_{A_{G^n_r}}$ the maximum degree of a circuit in the graph G^n_r. Then

$$t_{A_{G^n_r}} = n + (2r - 1)(n - 1).$$
Theorem

The degrees of the elements in the Graver basis of a toric ideal I_A cannot be bounded polynomially above by the maximal true degree of a circuit.

Or equivalently:
There is not a polynomial $f(x) \in \mathbb{R}[x]$, such that

$$\deg(B) \leq f(t_A), \forall B \in Gr_A,$$

for a toric ideal I_A, where t_A is the maximal true degree of the circuits $C \in C_A$.

Christos Tatakis

On the degree bounds of the Graver basis
Thank you!!!